Concurrent material point method and molecular dynamics approach for simulating transient responses

Zhen Chen, Yu Chen Su, Hetao Zhang, Shan Jiang, Thomas D. Sewell

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

To effectively simulate multiscale transient responses such as impact and penetration without the need to invoke a master/slave treatment, the multiscale material point method (Multi-MPM) is being developed wherein molecular dynamics (MD) at the nanoscale or dissipative particle dynamics (DPD) at the mesoscale are handled concurrently within the framework of the original MPM (continuum scale). The proposed numerical scheme for concurrently linking different scales is described here along with a preliminary error analysis. Representative examples for concurrent MPM and DPD and concurrent MPM and MD simulations were presented at SCCM-2015. Because the original MPM is an extension from computational fluid dynamics to solid dynamics, the proposed Multi-MPM might also become robust for dealing with multiphase interactions involving failure evolution.

Original languageEnglish
Title of host publicationShock Compression of Condensed Matter - 2015
Subtitle of host publicationProceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter
EditorsRamon Ravelo, Thomas Sewell, Ricky Chau, Timothy Germann, Ivan I. Oleynik, Suhithi Peiris
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735414570
DOIs
StatePublished - 13 Jan 2017
Event19th Biennial American Physical Society Conference on Shock Compression of Condensed Matter, SCCM 2015 - Tampa, United States
Duration: 14 Jun 201519 Jun 2015

Publication series

NameAIP Conference Proceedings
Volume1793
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference19th Biennial American Physical Society Conference on Shock Compression of Condensed Matter, SCCM 2015
Country/TerritoryUnited States
CityTampa
Period14/06/1519/06/15

Fingerprint

Dive into the research topics of 'Concurrent material point method and molecular dynamics approach for simulating transient responses'. Together they form a unique fingerprint.

Cite this