Characteristics of PCDD/F distributions in vapor and solid phases and emissions from the Waelz process

Kai Hsien Chi, Shu Hao Chang, Moo Been Chang

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

The Waelz process is a classic method used for recovering zinc from electric arc furnace (EAF) dusts containing relatively high concentrations of PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) as well as volatile metals, such as Zn, Pb, and Cu, and chlorine. As a result of the operating temperature in the cooling process and high carbon and chlorine contents, significant PCDD/Fs are formed in the typical Waelz process, causing public concerns regarding PCDD/F emissions. In this study, flue gas and ash samplings are simultaneously conducted at different sampling points to evaluate the removal efficiency and the partitioning of PCDD/Fs between the vapor and solid phases in the Waelz plant investigated. With the environment (temperature window, sufficient retention time, chlorine, and catalysts available) conducive to PCDD/F formation in the dust settling chamber (DSC), a significantly high PCDD/F concentration (1223 ng TEQ/Nm3) is measured in flue gas downstream from the DSC of the Waelz plant investigated. In addition, the cyclone and bag filter adopted in this facility can only remove 51.3% and 69.4%, respectively, of the PCDD/Fs in the flue gas, resulting in a high PCDD/F concentration (145 ng TEQ/Nm3) measured in the stack gas of the Waelz plant investigated. On the basis of treating 1 ton of EAF dust, the total PCDD/F discharge (stack gas emission + ash discharge) is 840 ng TEQ/kg EAF dust of the Waelz plant investigated. Because of the lack of effective air pollutant control devices for PCDD/Fs, about 560 ng TEQ/kg EAF dust are discharged via stack gas in this facility.

Original languageEnglish
Pages (from-to)1770-1775
Number of pages6
JournalEnvironmental Science and Technology
Volume40
Issue number6
DOIs
StatePublished - 15 Mar 2006

Fingerprint

Dive into the research topics of 'Characteristics of PCDD/F distributions in vapor and solid phases and emissions from the Waelz process'. Together they form a unique fingerprint.

Cite this