CESÀRO EXPONENTS OF MIXED NORM SPACES

Bonan Chen, Guozheng Cheng, Xiang Fang, Chao Liu, Tao Yu

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

In 1934, G. H. Hardy and J. E. Littlewood calculated [Proc. London Math. Soc. (2) 36 (1934), pp. 516–531] the optimal Cesàro exponent for Hardy spaces. In this paper we calculate it for mixed norm spaces, hence including the Bergman spaces in particular. The main technical challenge lies in the analysis of the example needed for the critical case.

Original languageEnglish
Pages (from-to)3935-3948
Number of pages14
JournalProceedings of the American Mathematical Society
Volume151
Issue number9
DOIs
StatePublished - 1 Sep 2023

Keywords

  • Bergman spaces
  • Cesàro means
  • Hardy spaces
  • mixed norm spaces
  • oscillatory integrals

Fingerprint

Dive into the research topics of 'CESÀRO EXPONENTS OF MIXED NORM SPACES'. Together they form a unique fingerprint.

Cite this