TY - JOUR
T1 - Carbon nanotubes/pectin/minerals substituted apatite nanocomposite depositions on anodized titanium for hard tissue implant
T2 - In vivo biological performance†
AU - Govindaraj, Dharman
AU - Rajan, Mariappan
AU - Munusamy, Murugan A.
AU - Alarfaj, Abdullah A.
AU - Higuchi, Akon
AU - Suresh Kumar, S.
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/6/15
Y1 - 2017/6/15
N2 - A surface deposition approach enveloping the use of biocompatible trace components and strengthening materials will affect the physicochemical and osseointegration properties of nanocomposite deposited implants. The current work is aimed at the development of functionalized carbon nanotubes (f-CNT)/Pectin (P)/mineralized hydroxyapatite (M-HA) ((f-CNT/P/M-HA)) nanocomposite depositions by electrophoretic deposition on anodized titanium (TiO2) implant. The capacity of f-CNT manages the cost of mechanical strength, while pectin (extracted from pomegranate peel) and minerals (strontium, magnesium, and zinc) enhance the biocompatibility of the HA deposition was investigate utilizing different methods. The functional and morphological analyses were done by FTIR, XRD, XPS, SEM-EDX and TEM. The mechanical depiction results show improved adherence quality for the nanocomposite deposition. Additionally, an enhanced viability of osteoblast cells (MG63 (HOS)) was monitored in vitro on the f-CNT/P/M-HA nanocomposite deposition. The capacity of the nanocomposite deposited TiO2 implant to encourage bone development was assessed in vivo. Hence, the as-synthesized nanocomposite deposited TiO2 that joins the comfort osteoconductivity of mineralized hydroxyapatite, pectin collectively with the compressive strength of f-CNT can have numerous uses in orthopaedics since it could enhance implant fixation in human bone.
AB - A surface deposition approach enveloping the use of biocompatible trace components and strengthening materials will affect the physicochemical and osseointegration properties of nanocomposite deposited implants. The current work is aimed at the development of functionalized carbon nanotubes (f-CNT)/Pectin (P)/mineralized hydroxyapatite (M-HA) ((f-CNT/P/M-HA)) nanocomposite depositions by electrophoretic deposition on anodized titanium (TiO2) implant. The capacity of f-CNT manages the cost of mechanical strength, while pectin (extracted from pomegranate peel) and minerals (strontium, magnesium, and zinc) enhance the biocompatibility of the HA deposition was investigate utilizing different methods. The functional and morphological analyses were done by FTIR, XRD, XPS, SEM-EDX and TEM. The mechanical depiction results show improved adherence quality for the nanocomposite deposition. Additionally, an enhanced viability of osteoblast cells (MG63 (HOS)) was monitored in vitro on the f-CNT/P/M-HA nanocomposite deposition. The capacity of the nanocomposite deposited TiO2 implant to encourage bone development was assessed in vivo. Hence, the as-synthesized nanocomposite deposited TiO2 that joins the comfort osteoconductivity of mineralized hydroxyapatite, pectin collectively with the compressive strength of f-CNT can have numerous uses in orthopaedics since it could enhance implant fixation in human bone.
KW - Bone
KW - Carbon nanotube
KW - Nanocomposite
KW - Osteogenic ability
KW - Pectin
UR - http://www.scopus.com/inward/record.url?scp=85018495227&partnerID=8YFLogxK
U2 - 10.1016/j.matchemphys.2017.03.039
DO - 10.1016/j.matchemphys.2017.03.039
M3 - 期刊論文
AN - SCOPUS:85018495227
SN - 0254-0584
VL - 194
SP - 77
EP - 89
JO - Materials Chemistry and Physics
JF - Materials Chemistry and Physics
ER -