TY - JOUR
T1 - Brown carbon light absorption over an urban environment in northern peninsular Southeast Asia
AU - Pani, Shantanu Kumar
AU - Lin, Neng Huei
AU - Griffith, Stephen M.
AU - Chantara, Somporn
AU - Lee, Chung Te
AU - Thepnuan, Duangduean
AU - Tsai, Ying I.
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/5/1
Y1 - 2021/5/1
N2 - Light-absorbing organic carbon (or brown carbon, BrC) has been recognized as a critical driver in regional-to-global climate change on account of its significant contribution to light absorption. BrC sources vary from primary combustion processes (burning of biomass, biofuel, and fossil fuel) to secondary formation in the atmosphere. This paper investigated the light-absorbing properties of BrC such as site-specific mass absorption cross-section (MACBrC), absorption Ångström exponent (AAEBrC), and the absorbing component of the refractive index (kBrC) by using light absorption measurements from a 7-wavelength aethalometer over an urban environment of Chiang Mai, Thailand in northern peninsular Southeast Asia (PSEA), from March to April 2016. The contribution of BrC to total aerosol absorption (mean ± SD) was 46 ± 9%, 29 ± 7%, 24 ± 6%, 20 ± 4%, and 15 ± 3% at 370, 470, 520, 590, and 660 nm, respectively, highlighting the significant influence of BrC absorption on the radiative imbalance over northern PSEA. Strong and significant associations between BrC light absorption and biomass-burning (BB) organic tracers highlighted the influence of primary BB emissions. The median MACBrC and kBrC values at 370 nm were 2.4 m2 g−1 and 0.12, respectively. The fractional contribution of solar radiation absorbed by BrC relative to BC (mean ± SD) in the 370–950 nm range was estimated to be 34 ± 7%, which can significantly influence the regional radiation budget and consequently atmospheric photochemistry. This study provides valuable information to understand BrC absorption over northern PSEA and can be used in model simulations to reassess the regional climatic impact with greater accuracy.
AB - Light-absorbing organic carbon (or brown carbon, BrC) has been recognized as a critical driver in regional-to-global climate change on account of its significant contribution to light absorption. BrC sources vary from primary combustion processes (burning of biomass, biofuel, and fossil fuel) to secondary formation in the atmosphere. This paper investigated the light-absorbing properties of BrC such as site-specific mass absorption cross-section (MACBrC), absorption Ångström exponent (AAEBrC), and the absorbing component of the refractive index (kBrC) by using light absorption measurements from a 7-wavelength aethalometer over an urban environment of Chiang Mai, Thailand in northern peninsular Southeast Asia (PSEA), from March to April 2016. The contribution of BrC to total aerosol absorption (mean ± SD) was 46 ± 9%, 29 ± 7%, 24 ± 6%, 20 ± 4%, and 15 ± 3% at 370, 470, 520, 590, and 660 nm, respectively, highlighting the significant influence of BrC absorption on the radiative imbalance over northern PSEA. Strong and significant associations between BrC light absorption and biomass-burning (BB) organic tracers highlighted the influence of primary BB emissions. The median MACBrC and kBrC values at 370 nm were 2.4 m2 g−1 and 0.12, respectively. The fractional contribution of solar radiation absorbed by BrC relative to BC (mean ± SD) in the 370–950 nm range was estimated to be 34 ± 7%, which can significantly influence the regional radiation budget and consequently atmospheric photochemistry. This study provides valuable information to understand BrC absorption over northern PSEA and can be used in model simulations to reassess the regional climatic impact with greater accuracy.
KW - Absorption Ångström exponent
KW - Biomass burning
KW - Chiang Mai
KW - Imaginary part of refractive index
KW - Mass absorption cross-section
UR - http://www.scopus.com/inward/record.url?scp=85101331004&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2021.116735
DO - 10.1016/j.envpol.2021.116735
M3 - 期刊論文
C2 - 33611195
AN - SCOPUS:85101331004
SN - 0269-7491
VL - 276
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 116735
ER -