Biodegradation of the endocrine disrupter 4-t-octylphenol by the non-ligninolytic fungus Fusarium falciforme RRK20: Process optimization, estrogenicity assessment, metabolite identification and proposed pathways

Ranjith Kumar Rajendran, Yi Wen Lee, Pei Hsin Chou, Shir Ly Huang, Roland Kirschner, Chu Ching Lin

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

4-t-octylphenol (4-t-OP), a well-known endocrine disrupting compound, is frequently found in various environmental compartments at levels that may cause adverse effects to the ecosystem and public health. To date, most of the studies that investigate microbial transformations of 4-t-OP have focused on the process mediated by bacteria, ligninolytic fungi, or microbial consortia. There is no report on the complete degradation mechanism of 4-t-OP by non-ligninolytic fungi. In this study, we conducted laboratory experiments to explore and characterize the non-ligninolytic fungal strain Fusarium falciforme RRK20 to degrade 4-t-OP. Using the response surface methodology, the initial biomass concentration and temperature were the factors identified to be more influential on the efficiency of the biodegradation process as compared with pH. Under the optimized conditions (i.e., 28 °C, pH 6.5 with an initial inoculum density of 0.6 g L−1), 25 mg L−1 4-t-OP served as sole carbon source was completely depleted within a 14-d incubation; addition of low dosage of glucose was shown to significantly accelerate 4-t-OP degradation. The yeast estrogenic screening assay further confirmed the loss of estrogenic activity during the biodegradation process, though a longer incubation period was required for complete removal of estrogenicity. Metabolites identified by LC-MS/MS revealed that strain RRK20 might degrade 4-t-OP as sole energy source via alkyl chain oxidation and aromatic ring hydroxylation pathways. Together, these results not only suggest the potential use of non-ligninolytic fungi like strain RRK20 in remediation of 4-t-OP contaminated environments but may also improve our understanding of the environmental fate of 4-t-OP.

Original languageEnglish
Article number124876
JournalChemosphere
Volume240
DOIs
StatePublished - Feb 2020

Keywords

  • Biodegradation pathways
  • Endocrine disrupting compounds
  • Long-chain alkylphenols
  • Non-ligninolytic fungus
  • Response surface methodology

Fingerprint

Dive into the research topics of 'Biodegradation of the endocrine disrupter 4-t-octylphenol by the non-ligninolytic fungus Fusarium falciforme RRK20: Process optimization, estrogenicity assessment, metabolite identification and proposed pathways'. Together they form a unique fingerprint.

Cite this