Biocompatibility and osteogenic capacity of Mg-Zn-Ca Bulk metallic glass for rabbit tendon-bone interference fixation

Chin Chean Wong, Pei Chun Wong, Pei Hua Tsai, Jason Shian Ching Jang, Cheng Kung Cheng, Hsiang Ho Chen, Chih Hwa Chen

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Mg-based alloys have great potential for development into fixation implants because of their highly biocompatible and biodegradable metallic properties. In this study, we sought to determine the biocompatibility of Mg60Zn35Ca5 bulk metallic glass composite (BMGC) with fabricated implants in a rabbit tendon-bone interference fixation model. We investigated the cellular cytotoxicity of Mg60Zn35Ca5 BMGC toward rabbit osteoblasts and compared it with conventional titanium alloy (Ti6Al4V) and polylactic acid (PLA). The results show that Mg60Zn35Ca5 BMGC may be classed as slightly toxic on the basis of the standard ISO 10993-5. We further characterized the osteogenic effect of the Mg60Zn35Ca5 BMGC extraction medium on rabbit osteoblasts by quantifying extracellular calcium and mineral deposition, as well as cellular alkaline phosphatase activity. The results of these tests were found to be promising. The chemotactic effect of the Mg60Zn35Ca5 BMGC extraction medium on rabbit osteoblasts was demonstrated through a transwell migration assay. For the in vivo section of this study, a rabbit tendon-bone interference fixation model was established to determine the biocompatibility and osteogenic potential of Mg60Zn35Ca5 BMGC in a created bony tunnel for a period of up to 24 weeks. The results show that Mg60Zn35Ca5 BMGC induced considerable new bone formation at the implant site in comparison with conventional titanium alloy after 24 weeks of implantation. In conclusion, this study revealed that Mg60Zn35Ca5 BMGC demonstrated adequate biocompatibility and exhibited significant osteogenic potential both in vitro and in vivo. These advantages may be clinically beneficial to the development of Mg60Zn35Ca5 BMGC implants for future applications.

Original languageEnglish
Article number2191
JournalInternational Journal of Molecular Sciences
Volume20
Issue number9
DOIs
StatePublished - 1 May 2019

Keywords

  • Biocompatible
  • Biodegradable
  • MgZnCa bulk metallic glass
  • Osteogenic

Fingerprint

Dive into the research topics of 'Biocompatibility and osteogenic capacity of Mg-Zn-Ca Bulk metallic glass for rabbit tendon-bone interference fixation'. Together they form a unique fingerprint.

Cite this