ASCOS: An Asymmetric network Structure COntext Similarity measure

Hung Hsuan Chen, C. Lee Giles

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

Discovering similar objects in a social network has many interesting issues. Here, we present ASCOS, an Asymmetric Structure COntext Similarity measure that captures the similarity scores among any pairs of nodes in a network. The definition of ASCOS is similar to that of the well-known SimRank since both define score values recursively. However, we show that ASCOS outputs a more complete similarity score than SimRank because SimRank (and several of its variations, such as PRank and SimFusion) on average ignores half paths between nodes during calculation. To make ASCOS tractable in both computation time and memory usage, we propose two variations of ASCOS: a low rank approximation based approach and an iterative solver Gauss-Seidel for linear equations. When the target network is sparse, the run time and the required computing space of these variations are smaller than computing SimRank and ASCOS directly. In addition, the iterative solver divides the original network into several independent sub-systems so that a multi-core server or a distributed computing environment, such as MapReduce, can efficiently solve the problem. We compare the performance of ASCOS with other global structure based similarity measures, including SimRank, Katz, and LHN. The experimental results based on user evaluation suggest that ASCOS gives better results than other measures. In addition, the asymmetric property has the potential to identify the hierarchical structure of a network. Finally, variations of ASCOS (including one distributed variation) can also reduce computation both in space and time.

Original languageEnglish
Title of host publicationProceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
PublisherAssociation for Computing Machinery
Pages442-449
Number of pages8
ISBN (Print)9781450322409
DOIs
StatePublished - 2013
Event2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013 - Niagara Falls, ON, Canada
Duration: 25 Aug 201328 Aug 2013

Publication series

NameProceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013

Conference

Conference2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013
Country/TerritoryCanada
CityNiagara Falls, ON
Period25/08/1328/08/13

Fingerprint

Dive into the research topics of 'ASCOS: An Asymmetric network Structure COntext Similarity measure'. Together they form a unique fingerprint.

Cite this