Abstract
The mechanisms and effectiveness of using zeolitic imidazolate framework (ZIF-8) [a sub-family of metal-organic framework (MOF)] particles on hexavalent chromium [Cr(VI)] removal were evaluated. The ultrasonic mixing method was applied for the preparation of ZIF-8, and chemicals used for ZIF-8 synthesis included ammonium hydroxide, zinc nitrate hexahydrate, and 2-methylimidazole. ZIF-8 particle had a clear rhombic dodecahedron morphology shape and a strong peak intensity with high crystallinity. The adsorption capacity (AC) of ZIF-8 was 30.3 mg of Cr(VI)/g of ZIF-8 [Cr(VI) = 50 mg/L]. The AC of Cr(VI) raised to 34.3 mg/g under acidic conditions (pH = 5), and the AC dropped to below 13.7 mg/g with a pH range from 7 to 11. It could be because of the competitive effects between CrO42− and hydroxide ions for adsorption locations of ZIF-8. Cr(VI) removal relied on the amount of Cr(VI) adsorbed on the particles of ZIF-8, and the mechanisms of Cr(VI) adsorption by ZIF-8 included chemical/physical processes and the rate-limiting step was the chemical adsorption. A fraction of sorbed Cr(VI) was reduced to Cr(III), and thus, ZIF-8 could serve as a reducing agent during Cr(VI) reduction. Cr(VI) was removed effectively from the water phase by ZIF-8 via adsorption and reduction mechanisms. Practitioner Points: ZIF-8 particles had an adsorption capacity of 30.33 mg of Cr(VI)/g of ZIF-8. Cr(VI) sorption by ZIF-8 has chemical (rate-limiting step) and physical processes. ZIF-8 can serve as a reducing agent for Cr(VI) reduction. Cr(VI) can be removed by ZIF-8 via the adsorption and reduction mechanisms.
Original language | English |
---|---|
Pages (from-to) | 1995-2009 |
Number of pages | 15 |
Journal | Water Environment Research |
Volume | 93 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2021 |
Keywords
- adsorption
- hexavalent chromium
- metal-organic framework
- zeolitic imidazolate framework