Projects per year
Abstract
Neural decoding is useful to explore the timing and source location in which the brain encodes information. Higher classification accuracy means that an analysis is more likely to succeed in extracting useful information from noises. In this paper, we present the application of a nonlinear, nonstationary signal decomposition technique—the empirical mode decomposition (EMD), on MEG data. We discuss the fundamental concepts and importance of nonlinear methods when it comes to analyzing brainwave signals and demonstrate the procedure on a set of open-source MEG facial recognition task dataset. The improved clarity of data allowed further decoding analysis to capture distinguishing features between conditions that were formerly over-looked in the existing literature, while raising interesting questions concerning hemispheric dominance to the encoding process of facial and identity information.
Original language | English |
---|---|
Article number | 6235 |
Journal | Sensors (Switzerland) |
Volume | 21 |
Issue number | 18 |
DOIs | |
State | Published - Sep 2021 |
Keywords
- Empirical mode decomposition (EMD)
- Face perception
- Magnetoencephalography (MEG)
- Neural decod-ing
Fingerprint
Dive into the research topics of 'Application of empirical mode decomposition for decoding perception of faces using magnetoencephalography'. Together they form a unique fingerprint.Projects
- 2 Finished
-
-
The Role of Morphologcal Complexcity and Semantic Distinctiveness on Word Recognition and Word Learning( I )
Hsu, C.-H. (PI)
1/02/19 → 31/01/20
Project: Research