Anomalous Response of Mercury’s Magnetosphere to Solar Wind Compression: Comparison to Earth

Yu Wei Chen, Jih Hong Shue, Jun Zhong, Han Wen Shen

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Magnetic field intensity increases when solar wind compresses a planet’s magnetosphere. The compression can be measured using the ratio of compressed magnetic fields to purely dipolar magnetic fields just inside the magnetopause. For Earth, the ratio is proportional to the subsolar standoff distance of the magnetopause. Data from in-orbit observations by the MESSENGER spacecraft indicate an opposite ratio for Mercury; the compression ratio is inversely proportional to the subsolar standoff distance. The additional magnetic fields induced by currents at the top of Mercury’s core enhance the total magnetic field strength. We also evaluated differences in the subsolar standoff of Mercury’s magnetopause according to the north-south polarity of the interplanetary magnetic field (IMF). Previous studies have not identified meaningful differences in subsolar standoff distance between those in northward versus southward IMF polarities for Mercury; however, we found that the difference is statistically significant at a large IMF B Z (15-20 nT). The magnetic reconnection that occurs behind the cusp for a large northward IMF transfers the magnetic flux to the dayside and increases the subsolar standoff distance. The eroded magnetic flux for a large southward IMF is compensated by the induced magnetic fields.

Original languageEnglish
Article number26
JournalAstrophysical Journal
Volume957
Issue number1
DOIs
StatePublished - 1 Nov 2023

Fingerprint

Dive into the research topics of 'Anomalous Response of Mercury’s Magnetosphere to Solar Wind Compression: Comparison to Earth'. Together they form a unique fingerprint.

Cite this