Abstract
Acne vulgaris is one of the most common skin diseases and can affect a large number of individuals at some point in their lives. Though the disease is multi-factorial, the Gram-positive, anaerobic bacterium Propionibacterium acnes (P. acnes), a member of resident skin microflora, is implicated in acne inflammation and associated with acne lesions. Common treatments such as antibiotic or benzoyl peroxide nonspecifically reduce bacteria population on the skin, which may disrupt homeostasis and cause further complications such as promoting growth of antibiotic-resistant bacteria strains. A component vaccine and an inactivated whole bacteria vaccine are made to target specifically P. acnes. The component vaccine targeting P. acnes surface sialidase and heat-inactivated P. acnes vaccine have both been shown to reduce P. acnes- induced inflammation in vivo and neutralize P. acnes in vitro, suggesting their potentials as new treatment for acne vulgaris. To facilitate acne studies, a bioengineering approach was utilized to design a new human acne model using tissue chamber. The tissue chamber of human sebocytes is shown to produce in mice a microenvironment similar to human acne inflammation. This approach can also be utilized in future studies in developing therapeutic acne vaccines and designing possible combined treatment of acne vaccine with alternative acne treatments.
Original language | English |
---|---|
Pages (from-to) | 639-643 |
Number of pages | 5 |
Journal | Giornale Italiano di Dermatologia e Venereologia |
Volume | 144 |
Issue number | 6 |
State | Published - Dec 2009 |
Keywords
- Acne vulgaris
- Propionibacterium acnes
- Vaccines