Projects per year
Abstract
This paper explores the effects of root-mean-square turbulence fluctuation velocity (u′ ) and ignition energy (Eig ) on an ignition kernel delay time (τdelay ) of lean premixed n-butane/air spherical flames with an effective Lewis number Le ≈ 2.1 >> 1. Experiments are conducted in a dual-chamber, fan-stirred cruciform burner capable of generating near-isotropic turbulence with negligible mean velocities using a pair of cantilevered electrodes with sharp ends at a fixed spark gap of 2 mm. τdelay is determined at a critical flame radius with a minimum flame speed during the early stages of laminar and turbulent flame propagation. Laminar and turbulent minimum ignition energies (MIEL and MIET ) are measured at 50% ignitability, where MIEL = 3.4 mJ and the increasing slopes of MIET with u′ change from gradual to drastic when u′ > 0.92 m/s (MIE transition). In quiescence, a transition of τdelay is observed, where the decrement of τdelay becomes rapid (modest) when Eig is less (greater) than MIEL . For turbulent cases, when applying Eig ≈ MIET, the reverse trend of MIE transition is found for τdelay versus u′ results with the same critical u′ ≈ 0.92 m/s. These results indicated that the increasing u′ could reduce τdelay on the one hand, but require higher Eig (or MIET ) on the other hand. Moreover, the rising of Eig in a specific range, where Eig ≤ MIE, could shorten τdelay, but less contribution as Eig > MIE. These results may play an important role to achieve optimal combustion phases and design an effective ignition system on spark ignition engines operated under lean-burn turbulent conditions.
Original language | English |
---|---|
Article number | 3914 |
Journal | Applied Sciences (Switzerland) |
Volume | 12 |
Issue number | 8 |
DOIs | |
State | Published - 1 Apr 2022 |
Keywords
- Lewis number
- flame speeds
- ignition kernel delay time
- laminar and turbulent minimum ignition energies
- transition
Fingerprint
Dive into the research topics of 'A Transition of Ignition Kernel Delay Time at the Early Stages of Lean Premixed n-Butane/Air Turbulent Spherical Flame Propagation'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Advanced Experimental Studies on High-Pressure, High-Temperature Premixed Turbulent Combustion(3/3)
Shy, S.-Y. (PI)
1/08/19 → 31/03/21
Project: Research