Abstract
To save manufacturing costs and enhance design flexibility in gear skiving, a dual closed loop, including inner and outer closed loops, is proposed to generate skived gear tooth flanks with different pressure angles and helix angles using the same cutter. The skiving cutter is firstly generated based on the suitable form of the corrected rack, which is defined according to the target tooth surface. The additional motions considering the motion limits of an electronic gearbox for the machining axis are added in the form of polynomials. The inner closed loop based on the Levenberg–Marquardt algorithm is developed to attain the coefficients of polynomials in fitting the skived gear tooth flanks to the target surface. After completing a cycle of the inner closed loop, the skived gear’s pressure/helix angle is changed in the outer closed loop to renew the target surface, and then a new cycle of the inner closed loop is restarted. The suitable range of the skived gear’s pressure/helix angle is satisfied when the dual closed loop is fully ended. The effectiveness and practicality of the proposed method are verified by the presented numerical examples.
Original language | English |
---|---|
Pages (from-to) | 875-902 |
Number of pages | 28 |
Journal | International Journal of Advanced Manufacturing Technology |
Volume | 123 |
Issue number | 3-4 |
DOIs | |
State | Published - Nov 2022 |
Keywords
- Double-crowned
- Gear skiving
- Grinding stock
- Topology modification