A fuzzy rule-based approach to spatio-temporal hand gesture recognition

Research output: Contribution to journalArticlepeer-review

69 Scopus citations

Abstract

Gesture-based applications widely range from replacing the traditional mouse as a position device to virtual reality and communication with the deaf. In this paper, we present a fuzzy rule-based approach to spatio-temporal hand gesture recognition. This approach employs a powerful method based on hyperrectangular composite neural networks (HRCNNs) for selecting templates. Templates for each hand shape are represented in the form of crisp IF-THEN rules that are extracted from the values of synaptic weights of the corresponding trained HRCNNs. Each crisp IF-THEN rule is then fuzzified by employing a special membership function in order to represent the degree to which a pattern is similar to the corresponding antecedent part. When an unknown gesture is to be classified, each sample of the unknown gesture is tested by each fuzzy rule. The accumulated similarity associated with all samples of the input is computed for each hand gesture in the vocabulary, and the unknown gesture is classified as the gesture yielding the highest accumulative similarity. Based on the method we can implement a small-sized dynamic hand gesture recognition system. Two databases which consisted of 90 spatio-temporal hand gestures are utilized for verifying its performance. An encouraging experimental result confirms the effectiveness of the proposed method.

Original languageEnglish
Pages (from-to)276-281
Number of pages6
JournalIEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews
Volume30
Issue number2
DOIs
StatePublished - May 2000

Keywords

  • Gesture recognition
  • Neuro-fuzzy system
  • Spatio-temporal pattern recognition

Fingerprint

Dive into the research topics of 'A fuzzy rule-based approach to spatio-temporal hand gesture recognition'. Together they form a unique fingerprint.

Cite this