Recently, many experimental techniques and theoretical models have been devoted to develope novel spintronics device, and the “interfacial magnetoelectric” effect is one of the vital issues to dominate the charge-, spin-, and magneto-transport properties in nmscale hetoerostructures. In this project, our self-developed “JunPy” package combines (1) first-principles calculation with noncollinear spin-orbit coupling, external bias, mechanical strain, magnetic field, gate voltage, and ferroelectric control with (2) non-equilibrium Green’s function (NEGF) method and generalized tight-binding model to provide both numerical simulation and analytical analysis for (a) multi-functional modulation spin transport in TMD nanoribbon based heterostructures, (b) out-of-plane current driven spin-transfer torque and voltage-controlled magnetic anisotropy torque in trilayer system, and (c) in-plane current driven spin-orbit torque in FM/HF bilayer system. We believe this multi-discipline and highly challenging work, involving computer programming, analytical derivation, and first-principles calculation, may provide promising simulation tools for next-generation, multifunctional and low-energy consumption spintronics devices.