The Study of Implementing the High Spatiotemporal Resolution Qpe Product from Composited Multiple Frequency Dual-Polarimetric Radar Measurements: Attenuation Characterisitcs of Melting Layer

Project Details


Several previous studies of using various dual-polarimetric radars with different wavelengthes (i.e., S, C and X-band) in Taiwan have shown the pronounced improvement of the accuracy of the quantitative precipitation estimation (QPE). The utilizing of the dual-polarimetric radar and the disdrometer data (i.e., drop size distribution) simultaneously is the main reason. In the coming few years, a new C-band QPE dual-polarimetric radar network will be constructed and cooperated with S-band network. Due to various manufacture configurations and surrounding environments, each radar has distinct error characteristics of non-meteorological signals. The removal of these non-meteorological signals is essential for quantitative applications from dual-polarimetric radar. The self-adaptive fuzzy-logic non-meteorological signals identification algorithm has been developed in previous project. Moreover, the dynamic system bias due to wet-random effect and the rain attenuation effect are crucial for further applications as well. The first of this three-year project has developed the algorithm for correcting the system bias and wet-random effect. Furthermore, investigating attenuation characteristics of melting layer is proposed in this project (second-year). The RCWF and RCMD The goals in this three-years project for second and third year are: 2nd year, evaluating the unified quality-control (QC) procedures by applying to RCMD and RCWF. Examining the attenuation characteristics of melting layer of C- and S-band radars.3rd year, investigating the performance of radar-based QPE before and after applying unified quality-control (QC) procedures.
Effective start/end date1/08/2031/07/21

UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):

  • SDG 11 - Sustainable Cities and Communities
  • SDG 15 - Life on Land
  • SDG 17 - Partnerships for the Goals


  • dual-polarimetric radar
  • melting-level bright band
  • attenuation correction


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.