Interferometric SAR (InSAR) analysis is an effective method for detecting and monitoring ground deformation. As the resolution of SAR imagery has significantly improved, it has a great potential to be applied to the long term monitoring of infrastructures and facilities in an engineering scale. However, most of current InSAR algorithms were designed for large-scale or regional observations. They may be not adequate for directly applying to the monitoring and accurate measurement of the subsidence and deformation of small-scale objects, such as bridges, high-speed rails, highways and buildings. This study will improve InSAR algorithms and develop and a systematic approach for monitoring infrastructure objects using time-series space-borne SAR data. The primary research concentrations will be placed on: (1) spatial accuracy improvement of persistent scatterers localization (orthorectification); (2) three dimensional deformation and displacement measurement using Differential InSAR analysis; and (3) integration and improvement of Small Baseline SAR Interferometry. The outcome of this study will not only improve the accuracy and performance of multi-temporal DInSAR analyses, but also provide a relatively economic alternative for the long-term monitoring of infrastructures, such as bridges, high-speed rails, highways, tunnels, dams and important buildings.
Status | Finished |
---|
Effective start/end date | 1/08/20 → 31/07/21 |
---|
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):