Project Details
Description
AMS is a particle physics experiment on the International Space Station. The AMS detector measures the composition and fluxes of charged particles in the cosmic rays. The goal is to study fundamental physics problems like the dark matter composition and search for anti-nuclei in the universe. In addition, the measurement of fluxes of ions will provide important input for the understanding of the production and propagation of the cosmic rays.The NCU AMS team is one of the initial collaborators of AMS. During the construction of AMS, we joined the effort of Academia Sinica and NCSIST teams in design, production, and testing of AMS electronics system. We started physics analysis and detector calibration after the launch of AMS detector to the ISS in May 2011. During the past four years, we have carried out measurements of the proton and helium fluxes. In parallel, the Taiwan AMS team has developed a new generation space computer based on the experiences of AMS DAQ computer. The first model has been selected for a test run in the space station next year.In the proposal, we plan to continue our research in AMS. We will perform analysis to measure the antiproton and deuteron fluxes. They will provide critical information about the darkmatter and the origin of the cosmic rays. We will also start the measurement of heavy elements like Carbon or Oxygen. These analyses will improve our understanding of the cosmic ray propagation in the galaxy. We plan to continue the development of the space computer for more varieties of functionality and performance.AMS Tracker Thermal Contral System (TTCS) has shown aging since 2013. One of four pumps stopped operation. Two other pumps also see intermittent problems. After detailed investigation, we understand that the problem is due to insufficient lubrication, which caused pump components to suffer premature wearing. The AMS team plans to replace the whole system. NASA has agreed to carry out a EVA for the replacement. The electronics system for the TTCS was built by Taiwan teams, and we will take responsibility to build the electronics system of the upgrade system.
Status | Finished |
---|---|
Effective start/end date | 1/08/16 → 31/07/17 |
UN Sustainable Development Goals
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This project contributes towards the following SDG(s):
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.