Skip to main navigation
Skip to search
Skip to main content
National Central University Home
Help & FAQ
English
中文
Home
Scholar Profiles
Research units
Projects
Research output
Datasets
Prizes
Activities
Press/Media
Impacts
Search by expertise, name or affiliation
Dr-Srwgan: a Self-Trained Disentangle Representation and Super-Resolution Wasserstein Generative Adversarial Networks for Iris Segmentation and Occlusion Estimation
Li, Yung-Hui
(PI)
Department of Computer Science and Information Engineering
Overview
Fingerprint
Research output
(3)
Research output
Research output per year
2020
2020
2021
2021
3
Article
Research output per year
Research output per year
3 results
Publication Year, Title
(descending)
Publication Year, Title
(ascending)
Title
Type
Filter
Article
Search results
2021
Continuous blood pressure estimation using exclusively photopletysmography by lstm-based signal-to-signal translation
Harfiya, L. N.
,
Chang, C. C.
&
Li, Y. H.
,
1 May 2021
,
In:
Sensors (Switzerland).
21
,
9
, 2952.
Research output
:
Contribution to journal
›
Article
›
peer-review
Open Access
blood pressure
100%
Blood Pressure
94%
Blood pressure
86%
diastolic pressure
25%
systolic pressure
25%
41
Scopus citations
2020
Generalized deep neural network model for cuffless blood pressure estimation with photoplethysmogram signal only
Hsu, Y. C.
,
Li, Y. H.
,
Chang, C. C.
&
Harfiya, L. N.
,
1 Oct 2020
,
In:
Sensors (Switzerland).
20
,
19
,
p. 1-18
18 p.
, 5668.
Research output
:
Contribution to journal
›
Article
›
peer-review
Open Access
blood pressure
100%
Computer Neural Networks
97%
Blood Pressure
94%
Blood pressure
86%
Deep neural networks
72%
39
Scopus citations
Real-time cuffless continuous blood pressure estimation using deep learning model
Li, Y. H.
,
Harfiya, L. N.
,
Purwandari, K.
&
Lin, Y. D.
,
1 Oct 2020
,
In:
Sensors (Switzerland).
20
,
19
,
p. 1-19
19 p.
, 5606.
Research output
:
Contribution to journal
›
Article
›
peer-review
Open Access
Deep Learning
100%
blood pressure
97%
Blood Pressure
92%
Blood pressure
84%
learning
78%
69
Scopus citations