Effect of nitric acid oxidation on the surface of hydrochars to sorb methylene blue: An adsorption mechanism comparison

  • Huan Ping Chao (Contributor)
  • Duy Hai Nguyen (Contributor)
  • Chu-Ching Lin (Contributor)
  • Hai Nguyen Tran (Contributor)

Dataset

Description

The capacity and underlying mechanism of hydrochars derived from commercial D-glucose and wasted orange peels (designated as pristine-hydrochars) and further modified with nitric acid (designated as oxidized-hydrochars) to adsorb methylene blue were investigated. Both pristine- and oxidized-hydrochars were characterized by scanning electron microscopy, Brunauer–Emmet–Teller-specific surface area, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and mass titration. The maximum methylene blue adsorption capacity at 30°C estimated by the Langmuir model was found to follow the order: mGH (246 mg/g) > mOPH (107 mg/g) > OPH (59.6 mg/g) > GH (54.8 mg/g). Six adsorption mechanisms were elucidated, in which the electrostatic interaction and hydrogen bonding were identified as the primary methylene blue-hydrochar adsorptive interaction; furthermore, because the nitric acid modification process enhanced oxygen- and nitrogen-containing functional groups and unsaturated bonds on the surface of oxidized-hydrochars, the π–π and n–π interaction became minor pathways for methylene blue adsorption onto oxidized-hydrochars. Our results suggest that modified hydrochars could be used as environmentally friendly adsorbents alternative to activated carbon in dealing with methylene blue contamination in aqueous solutions.
Date made available1 Oct 2019
Publisherfigshare SAGE Publications

Cite this